Respiratory Failure and Mechanical Ventilation

JENNIFER L. HUBBARD, MD, FACS MAY 21, 2020

Assessment

Talk to the patient

- Stridor
- Hoarseness
- Can't speak in full sentences
- Induction of coughing

► Inspection

- ▶ Tachypnea
- Use of accessory muscles
- Cyanosis/distress

Auscultation
 Absent breath sounds
 Wheezes
 Ronchi

Assessment

- Pulse oximetry
 - ▶ Normal > 95%
 - COPD patients may "live" low 90s/high 80s
 - Make sure waveform accurate
 - Innaccurate once sats < 80%</p>

► CXR

ABG
 ph/pCO2/pO2/HCO3/BE/sat
 pO2 = dissolved oxygen in blood
 Delivery of oxygen at tissue level

DO2 = CO x [CaO2=(1.34 X Hgb X SaO2) + (0.003 X PaO2)]

Ergo: sats more reflective of what is happening with oxygen perfusion at tissue level

68 y/o M s/p MCC with 6-8 R rib fractures O2 sat 90% on room air Next step?

Respiratory support/adjuncts

Atelectasis prevention/treatment
Incentive spirometer
Flutter valve
Ez-pap (PEP)
Chest physiotherapy (vest, bed percussion)

Respiratory Support

Supplemental oxygen
Nasal cannula
Simple mask
Non-rebreather
Oxymask

Non-invasive mechanical ventilation

- CPAP (mask or nasal only)
 - Constant pressure (similar to PEEP) increases FRC
 - Settings: pressure and FiO2
- BIPAP (mask or nasal only)
 - Constant pressure increases FRC
 - Additional driving pressure when patient initiates breath (i.e. pressure support)
 - Settings: pressure support, pressure, and FiO2
 - ▶ 12/10 on 50%
- AVAPS
 - Tidal volume (Vt), pressure support, constant pressure

Indications for CPAP/BiPAP/AVAPS

► OSA

- Atelectasis and mild respiratory failure in patient with intact sensorium
 - e.g. rib fracture patient
- COPD patients
- DNR/DNI but otherwise full measures

Generally NOT indicated for post-op patients with respiratory failure, sepsis with respiratory failure, and patients failing extubation

Indications for intubation

► SOAP

- Secretions that are excessive and/or cannot be cleared by the patient
- Oxygenation that is inadequate
- Airway compromise or obstruction
 - ▶ Altered mental status (GCS \leq 8)
- Pulmonary function not meeting ventilatory needs
- Impending failure
 - "Guppy breathing," using accessory muscles, severe tachypnea
 - Not sustainable and will lead to fatigue and eventual hypoventilation +/hypoxemia

Choosing a Mode

Most surgical patients start off on SIMV or AC
Adjust as needed based on patient comfort and physiology

Mechanical ventilator modes

Pressure support (spontaneous) Pressure support, PEEP, FiO2 ▶15/10 on 35% Requires patient to initiate all breaths (no "back-up" rate) Usually used for SBT or patient's needing prolonged weaning

Mechanical ventilator modes: Volume Control

Assist Control (AC)

- Rate
- Tidal Volume (Vt)
- ► PEEP
- ► FiO2
- Full tidal volume delivered with each initiated breath
 AC 14 550 8 40%

Rate

SIMV

- Tidal Volume (Vt)
- PEEP
- Pressure supportFiO2
- Full tidal volume delivered with only the set rate of breaths.
 - Additional breaths supported with PS, but volume determined by patient effort.
- SIMV 14 550 8 10 40%

Mechanical ventilator modes: Pressure Control

Plateau pressure or peak pressure used instead of tidal volume

Decreases barotrauma

- Popularized by ARDSNet studies
- Rate Ppk Peep (+/- PS) FiO2

(Can do AC vs SIMV type settings with Pressure instead of Vt)

PC 14 35 8 10 35%

Mechanical ventilator modes: Hybrid

- PRVC (Pressure Regulated Volume Control)
 - AKA Dual Mode
 - Gives tidal volume breaths but not allowed to exceed specified pressure
 - Tidal volumes may decrease within a pre-specified range
 - If unable to maintain parameters --> lots of alarms and phone calls from RTs

Additional settings

►I:E ratio

Normal respirations about 1:3
Increasing inspiration can increase oxygenation by can lead to auto-PEEP and hyperinflation
Inverse ratio ventilation (IRV) popular 90s & early 2000s

- Great for oxygenation
- Severe auto-PEEP
- ► Lots of PTX

Traditional Modes: making adjustments

- Starting points
 - Rate 14
 - Vt 5-10 ml/kg
 - ▶ 5-7 for ARDS or "at risk"
 - 8-10 less often (spinal cord injuries)
 - Pressure control 18-20 if fairly normal compliance; higher with ARDS/pulmonary edema
 - ▶ PEEP 5-8
 - ▶ PS 10-12
 - FiO2 100% and wean down based on sats

Traditional Modes: making adjustments

Oxygenation (Sat, paO2)Adjust PEEP or FiO2 \blacktriangleright FiO2 > 50% --> lung toxicity Ventilation (pCO2) Adjust Vt (or P_{peak}) or rate Increased rate or Vt --> decreased pCO2

- Gasping, guppybreathing; patientventilator dysynchrony
 - Increase pressure support
 - ► Increase PEEP
 - Try a different mode
 - Increase sedation

Mechanical ventilator modes: APRV

APRV (AKA Bilevel)

- High constant pressure (P_{high})
- Short release for expiration (P_{low})
- Spontaneous breathing superimposed

Mechanical ventilator modes: APRV

Indications

Rescue mode for refractory hypoxemia
 Patient-ventilator dysynchrony
 Some patients find it more comfortable as they are able to breathe spontaneously

APRV settings

► P_{high}

Depends on level of support needed. Generally < 30</p>

► P_{low}

- Usually 0 or 3 to start
- Increase if refractory hypoxemia

T_{high}

- Good starting point is 5 seconds
- Sometimes just give "rate" and RT will calculate T_{high} and T_{low}

► T_{low}

Good starting point is 0.5 seconds

Adjusting APRV

Hypoxemia
 Increase P_{high}
 Reduce T_{low}
 Increase T_{high}
 Increase P_{low}

Hypoventilation (Hypercarbia) Decrease sedation to allow more spontaneous ventilation Increase P_{hiah} ► T_{hiah} manipulation (may need to "play with it") Increasing leads to more recruitment Decreasing leads to increase minute ventilation

Mechanical ventilator modes: APRV

Weaning
 Drop and stretch
 Drop P_{high} (usually 2 at a time) and increase T_{high}
 Can change back to conventional mode when P_{high} is 16-20
 Can extubate directly from APRV mode

Refractory hypoxemia/ARDS

► ARDS

- Bilateral infiltrates on chest radiograph
- PaO2/FiO2 (P:F) ratio ≤200 mmHg,
- No evidence of left atrial hypertension or a pulmonary capillary pressure <18 mmHg (if measured) to rule out cardiogenic edema

Acute Lung Injury (ALI)
 P:F = 201-300 mmHg

Refractory hypoxemia/ARDS

Vent adjustments High PEEP, low Vt/pressure strategy Adjuncts Rotorest (requires specialty bed) Proning (specialty bed or manually) Increases oxygenation No mortality benefit Inhaled prostaglandins

> Improve oxygenation and decrease pulmonary artery pressures, but new and data lacking

Rescue Modes

High frequency oscillatory ventilation (HFOV)
Increased mortality in ARDS
Not recommended except in pediatrics

Rescue Modes

High frequency percussive ventilation (HFPV), AKA VDR

- Delivers subphysiologic tidal volumes at high frequencies superimposed on typical ventilator flow
- Low peak pressures and PEEP with higher mean airway pressure
- Mobilizes secretions d/t to eddy currents that form around the aliquots of air as the tidal volumes are delivered in a percussive fashion

Improved oxygenation with lower peak pressures compared with conventional modes

No randomized data to show mortality benefit

Rescue Modes

► ECMO

- Should not be used as "last ditch" effort (but that's usually how we use it)
- Hard to know which patients will benefit
- Best done at ECMO centers (e.g. Legacy Emmanuel)

SIMV 12 400 10 10 80%
ABG: 7.28/50/130/24/-2 on 80%

 Hypercarbia and respiratory acidosis = increase Vt or rate
 Good oxygenation with high FiO2 = decrease FiO2

AC 18 500 10 60%
ABG: 7.49/32/55/16/4

Decrease rate. Increase PEEP. Consider ARDS adjuncts if clinically worsening.

Bilevel 24/0 40%
ABG: 7.42/38/135/22/1

Bilevel 26/0 50%
 ABG: 7.25/45/60/18/-6

Correct metabolic acidosis
 Increase P_{high} or P_{low}