

THE ELECTRONIC LIBRARY OF TRAUMA LECTURES

THE ELECTRONIC LIBRARY OF TRAUMA LECTURES

Burn and Inhalation Injury

Objectives

At the conclusion of this presentation the participant will be able to:

- Identify types of burn injury
- Describe assessment of the burn patient
- Identify patients requiring transfer to a burn center
- Understand the significance of inhalation injury on burn patient outcomes

Epidemiology

486,000 burns per year seen in ED

- 221,519 admitted with ICU stay
- 62% male
- 56% age 20 to 59.9 years
- 22.5% are <16 years
- 16.9% are >60 years
- 63% are < 10% (TBSA)
- 72.5% of burn injuries occur in the home

Burns and Trauma

Type of Injuries

- Fractures: 45 64%
- Complex soft tissue injuries: 36 52%
- Traumatic brain injury: 17 - 26%
- Thoracic and abdominal injuries: 4 24%

Common Causes

- MVC
- Scald during assault
- Plane crash
- Explosion with shrapnel

Morbidity and Mortality

- Mortality for all cases ranged from 3.0-5.4% for fire/flame injuries.
- Average length of stay 8.5-10 days.
- Factors affecting mortality:
 - Age
 - % TBSA
 - Inhalation injury

Resource Utilization

- For survivors, average LOS was slightly greater than 1 day per % TBSA.
- For non-survivors, hospital stay was 2-3 weeks with TBSA < 80%.
- 87% were eventually discharged home.
- For burns > 10% TBSA, average cost is \$268,435 \$354,560.
 - Higher among non-survivors

Mechanism of Burn Injury

- Thermal
- Frostbite
- Inhalation

Mechanism of Burn Injury

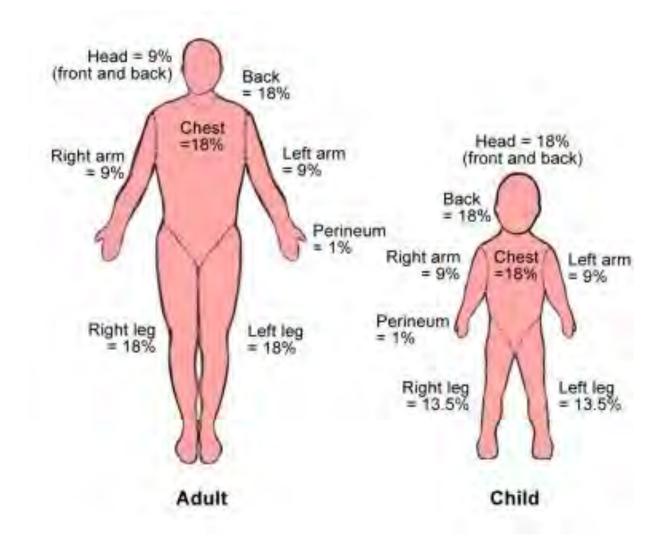
Flame 40.6%

Scald 31.4%

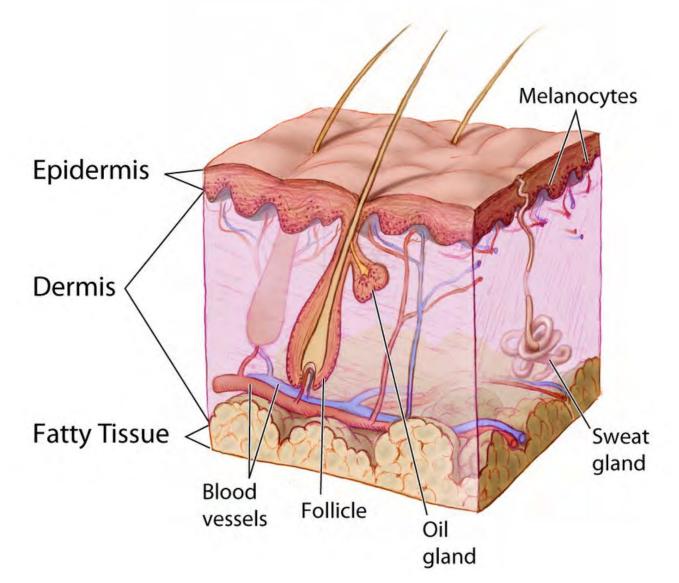
Contact 9.1%

Electric 3.6%

Chemical 3.5%


The second sta

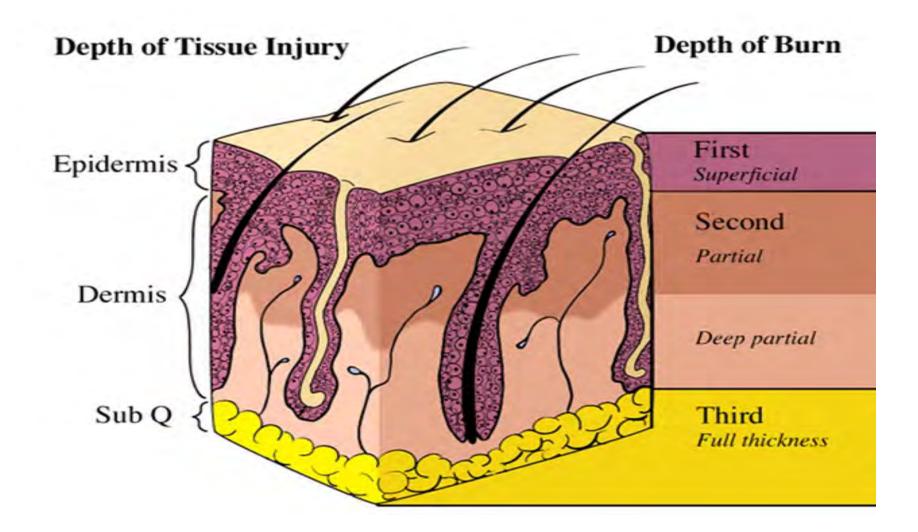
Manager into the line of the


Rule of 9's

Severity of Injury

- Depth
 - Superficial
 - Superficial partial thickness
 - Deep partial thickness
 - Full thickness
- Extent of burn
- Age
- Past Medical History
- Location of burn
- Concurrent trauma
- Smoke inhalation

Anatomy of the Skin


Functions of the Skin

- Prevention of infection
- Conserve body
 fluids
- Temperature regulation
- Cosmetic
 appearance
- Sensation and touch

Burn Pathophysiology

- Hypermetabolic state
 - Protein utilization
 - Loss of lean body mass
 - Hyperglycemia
- Inflammatory mediators
 - Shock
 - Hypovolemia
 - Increased pulmonary and vascular resistance
 - Myocardial depression

Anatomy of the Skin

Depth: Superficial Burns

- First degree
- Pink in color
- Damage to epidermis
- Do not count in TBSA calculation
- No resuscitation fluid
 necessary
- Heals on its own

Depth: Partial Thickness Burns

Kronoman at English Wikipedia, CC BY-SA 3.0 via Wikimedia Commons

Depth: Full Thickness Burns

- Third degree
- White, black, brown in color, dry, leathery in appearance
- Burned skin non-pliable
- Circumferential third degree may require escharotomy.
- Skin grafting required.

Inhalation Injury

- Average of 8.6% of admission to burns centers have concomitant inhalation injuries.
- Incidence increases with TBSA.
- Associated with higher mortality
 - Overall mortality rate 20% with inhalation injury versus 2.9% without inhalation injury
 - In those > 60 years, fatality increases above 50% with TBSA \ge 20%.
- Diagnosed and graded 0 to 4 based on severity via bronchoscopy.

Inhalation Injury -Assessment

Assessment

- History
- Singed hair
- Soot in oropharynx
- Carbonaceous sputum
- Hypoxia, SOB
- Stridor, hoarseness
- Wheezing, rhonchi, use of accessory muscles
- Oropharyngeal erythema

Inhalation Injury -Treatment

- For patients suspected of having an inhalation injury, do not wait to intubate as with ongoing fluid resuscitation, swelling will increase and it will be difficult to pass an endotracheal tube.
- Stridor or hoarseness is a late sign!

ABA Burn Center Referral Criteria

- Partial thickness burns >10%
- Burns to face, hands, feet, genitalia, perineum, or major joints
- Full thickness burns any age
- Electrical burns
- Chemical burns
- Inhalation injury

- Patients with pre-existing medical conditions
- Patients with burns & concomitant trauma
- Pediatric burns
- Patients who will require special social, emotional, or long-term rehab intervention

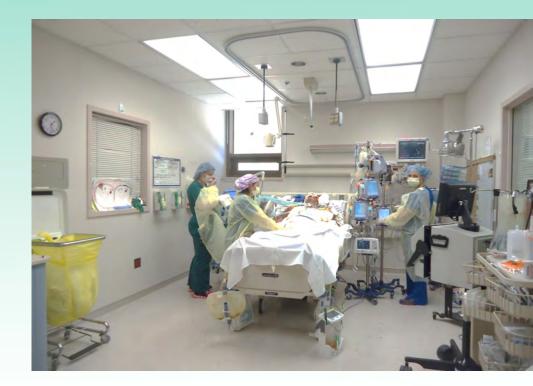
Preparation for Transfer

- Maintain patent airway
- Monitor urine output and adequacy of resuscitation
- Keep patient warm and dry
- Secure all lines and tubes
- Wound care
- Manage pain

US Burn Centers

- Over 60% of US burns admitted to 128 burn centers, 64 are ABA verified
- Offer functional and cosmetic outcomes
- Specialty OT, PT, Social Work, Psychologists

Red dots are ABA verified burn centers.


Initial Fluid Resuscitation

- Burns > 20% TBSA
- LR infusion for Adults > 30kg
- Pediatric < 30kg
 - < 10kg use D5LR
 - > 10-30kg use LR
- Monitor urine output and adjust fluids to achieve:
 - Adults 30-50 ml/hour
 - Infants 1-2 ml/kg/hour
 - Children 0.5-1 ml/kg/hour

Burn Resuscitation Formula

- Adult & Chemical Burns:
 - 2 ml LR X kg X %TBSA
- Pediatric (14 years or under and less than 30kgs):
 - 3 ml LR X kg X %TBSA
- Adult High Voltage Electric Injuries:
 - 4 ml LR X kg X %TBSA
- Pediatric High Voltage Electric Injuries
 - Consult Burn Center
- % TBSA: calculated based on full & partial thickness burns, NOT superficial burns
- Administer half of the total fluids in the first 8 hours post burn and the second half in the next 16 hours

Example Resuscitation Formula

- 50% TBSA (Full and partial thickness degree burns only)
- Age: 28
- Mechanism: explosion
- Weight: 70 kg
- 2 ml X 70kg X 50% TBSA = 7,000 cc
- Give 3,500 ml over the first 8 hours
- Give the other 3,500 ml over the next 16 hours

Escharotomy

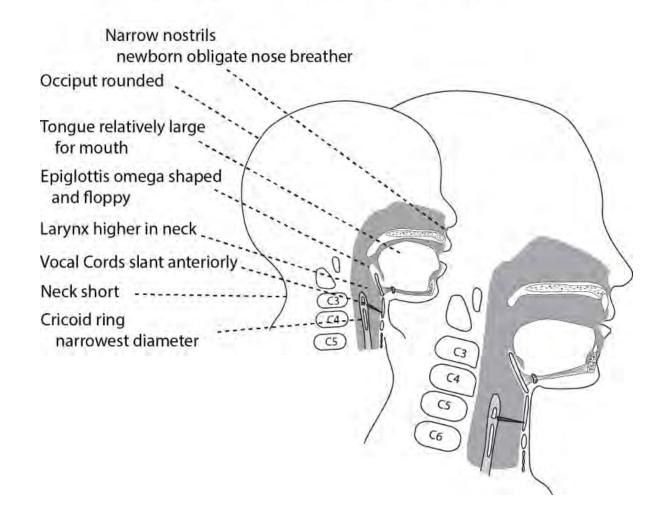
Circumferential Injury Full Thickness Burns Limb Threatening

Pediatric Burns

- Psychosocial issues
- Airway
- Breathing
- Circulation
 - Children < 10kg should have D5LR for resuscitation

9	Las Vegas FireRescue 🥝 @LasVegasFD
	@LasVegasFD

Here in Las Vegas, a garden hose exposed to direct sunlight during summer can heat the water inside the hose (not flowing) to 130-140 degrees which can cause burns especially to children & animals. Let the water flow a few minutes to cool before spraying on people or animals.



1:41 PM - 4 Jun 2018

Pediatric Burns

Infant vs. Adult Airway Differences

Respiratory

- Large tongue
- Small pharynx
- Larger, floppier epiglottis
- Larynx more anterior
- Narrowest at cricoid
- Trachea narrow and less rigid

Pediatric Burns

Circulation

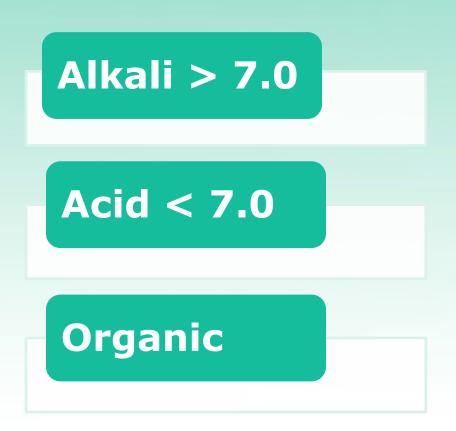
- Larger surface area
- Increased volume needs
- Limited glycogen stores
- Hypothermia risk
- Thinner skin
- IV pain medication

Geriatric Burns

- Contact with flame is most common (50%), followed by scald (20%)
- Pre-injury health statusconditions
- Abuse or neglect
- Thin skin
- Decreased reserves
- May need additional monitoring to guide resuscitation
- May affect independence

Chemical Burns

- Most are strong acids or alkalis
- Contained in common household items:
 - Ammonia


Pool chlorinators

- Bleach
- Cleaners for drain,
 Concrete mix toilet bowl, metals
- **Battery acid**

- Pattern is full thickness in center surrounded by partial thickness
- Most common in young and those working with chemical products

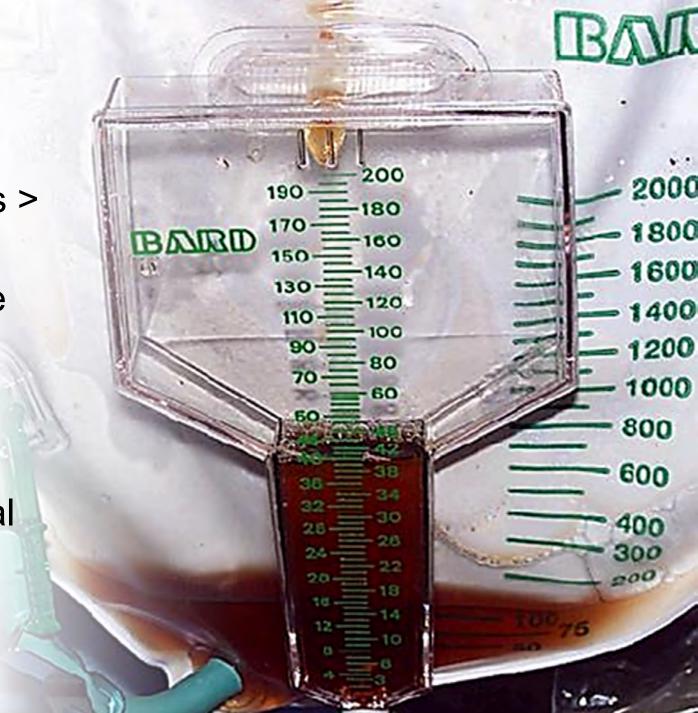
Chemical Burns

Treatment

- Remove clothing
- Brush off powder
- Copious irrigation
- Splash injury common
- Check eyes

Hydrofluoric Acid Burn

- Unique: dilute solutions penetrate deeply before showing signs
- Requires additional neutralization of fluoride ions
- Fluoride ions → toxic, tissue necrosis, binds to serum calcium and magnesium
- Fluoride binds to calcium leading to hypocalcemia and dysrhythmias.
- Consult burn center for neutralization.



Uploaded by TCO at en.wikipedia, CC BY-SA 3.0 via Wikimedia Commons

Electrical Burn

- Concerning when source is > 15,000 volts
- Extent difficult to determine
- Cardiac monitoring
- Hemoglobinuria
- Compartment syndrome
- Fluid resuscitation with goal of output 75-100 cc urine/hour

Frostbite

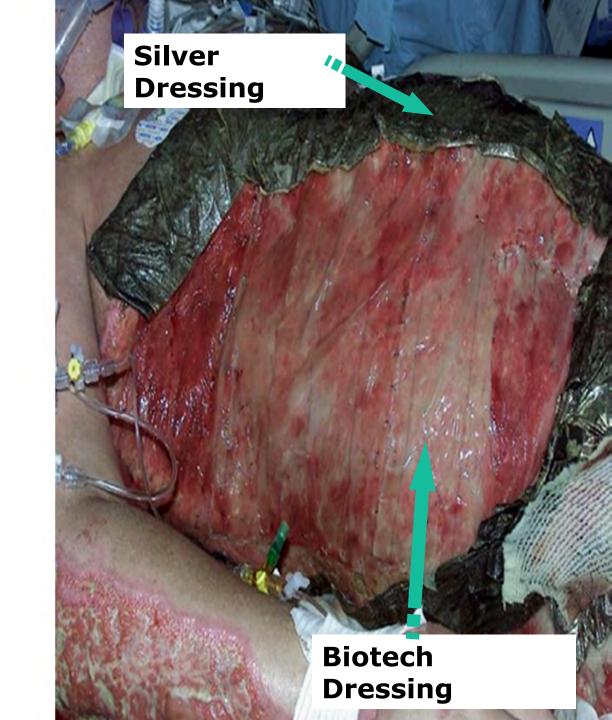
- Extracellular and intracellular ice form
- Gentle rewarming
- Reperfusion injury
- Several weeks to months to determine full extent of injury
- May result in loss of digits

Autologous Skin Grafting

- Split Thickness Skin Graft (STSG)
 - Full thickness burns
 - Meshed vs Sheet
- Donor site: partial thickness, into dermis, heals in 2 weeks
- Harvested skin is put through a skin mesher in order to create slits in the skin (mesh size is varied depending on how much donor site a patient has available).

Skin Grafting Options

- Alternatives or adjuncts to autologous skin grafts
 - Used with large surface area burns and limited normal skin
- Cultured epidermal autografts
 - Uses skin cells from the person to grow epidermis sheets
 - Takes 3-4 weeks to create
 - Has been found to secrete growth factors critical for cell proliferation and migration, which can enhance healing when used with autografts
- Allogeneic cultured epidermis
 - Can be prepared in advance and cryopreserved to be used in combination with widely expanded split-thickness autografts enhancing epithelialization
 - Can be used in the acute phase while cultured epidermal autografts are prepared


Donor Sites

- Painful
- Heal on their own
- STSG donor sites may be re-harvested

Wound Care

- Cleanse wound with saline or soap and water.
- Frequent debridement in deep full thickness burns
- Topical antimicrobial creams
- Silver dressings
- Biotechnology dressings

Complications

- Inadequate resuscitation
 - Single or multiple organ dysfunction syndrome (MODS)
 - Often accompanied by SIRS
- Over resuscitation
 - Compartment syndrome- abdominal or extremity
 - Pulmonary edema, ARDS
- Ongoing resuscitation
 - Based on size of burn and if inhalation injury present
 - Comorbidities and age considerations
 - Monitor for coagulopathy and ensure use of thromboprophylaxis

Burn Research

- Burn registries and national EMS reporting systems have improved opportunities for burn research.
- Evidence based practice has increased in the past decade.
- Survival rates have improved but challenges remain.

Future Considerations

- Biotechnology
- Epidermal replacement options
- Stem cells
- Reduce overall functional recovery time

Summary

- Initial burn management priorities include:
 - Maintain adequate airway
 - Adequate fluid resuscitation
 - Transfer patient to a burn center if necessary as quickly as possible.
- Special considerations when caring for pediatric or elderly
- Inhalation injury compounds and complicates healing, morbidity, and mortality.
- Continued research into treatment options to improve outcomes

Burn and Inhalation Trauma

1. Mr. Zimmer arrives in your emergency department with burns to his face, chest and arms from an explosion in his basement. He presents with shortness of breath and chest pain. What is your priority intervention?

- a. Assess his airway
- b. Cover the burns
- c. Monitor his cardiovascular status
- d. Intubate him because he's probably got an inhalation injury

2. A 35 year-old patient arrives to your emergency department with 57% total body surface area burns due to electrical injury. Important considerations for this patient include all of the following EXCEPT:

- a. Monitor EKG for dysrhythmias
- b. Observe for hemoglobinuria
- c. Fluid resuscitation with goal of 30cc urine output per hour
- d. Monitor for compartment syndrome

3. Mr. Sampson was working on his car when he accidently poured gasoline on the engine and it exploded. He has burns over 80% of his body and his weight is 100Kg. Please calculate his fluid needs for the first 24 hours:

- a. 8,000 cc
- b. 12,000 cc
- c. 20,000 cc
- d. 16,000 cc

4. If a patient has evidence of facial swelling and soot in the oral passages, what management option should be considered?

- a. Early intubation
- b. High flow oxygen
- c. Monitoring of respiratory status with pulse oximetry
- d. Admission to the burn unit
- 5. Indications for referral to a burn center include all of the following EXCEPT:
 - a. All pediatric patients
 - b. Facial burns
 - c. Full thickness burn 4% TBSA
 - d. Second-degree burns < 8% TBSA
- 6. What can one anticipate immediately after a major burn?
 - a. Airway compromise
 - b. Increased vascular permeability
 - c. Decreased peripheral vascular resistance
 - d. Decreased blood viscosity

- 7. Initial treatment for frostbite includes all of the following EXCEPT:
 - a. Remove wet clothing
 - b. Briskly rub to restore circulation
 - c. Prevent pressure on affected parts.
 - d. Immerse in warm water from 98.6 to 102.6 F
- 8. Cleansing of the burn wound should entail use of:
 - a. Saline or soap and water
 - b. Betadine scrubs
 - c. An antibacterial agent
 - d. A topical antimicrobial
- 9. Children age < 2 years require more fluid resuscitation than adults.
 - a. True
 - b. False
- 10. What is the primary wound covering method for full thickness burns?
 - a. Biologic dressings
 - b. Autografts
 - c. Enzymatic debridement creams
 - d. Hydrocolloid dressings

Burn and Inhalation Trauma

1. Mr. Zimmer arrives in your emergency department with burns to his face, chest and arms from an explosion in his basement. He presents with shortness of breath and chest pain. What is your priority intervention?

a. Assess his airway

- b. Cover the burns
- c. Monitor his cardiovascular status
- d. Intubate him because he's probably got an inhalation injury

2. A 35 year-old patient arrives to your emergency department with 57% total body surface area burns due to electrical injury. Important considerations for this patient include all of the following EXCEPT:

- a. Monitor EKG for dysrhythmias
- b. Observe for hemoglobinuria
- c. Fluid resuscitation with goal of 30cc urine output per hour
- d. Monitor for compartment syndrome

3. Mr. Sampson was working on his car when he accidently poured gasoline on the engine and it exploded. He has burns over 80% of his body and his weight is 100Kg. Please calculate his fluid needs for the first 24 hours:

- a. 8,000 cc
- b. 12,000 cc
- c. 20,000 cc
- d. 16,000 cc

4. If a patient has evidence of facial swelling and soot in the oral passages, what management option should be considered?

a. Early intubation

- b. High flow oxygen
- c. Monitoring of respiratory status with pulse oximetry
- d. Admission to the burn unit
- 5. Indications for referral to a burn center include all of the following EXCEPT:
 - a. All pediatric patients
 - b. Facial burns
 - c. Full thickness burn 4% TBSA
 - d. Second-degree burns < 8% TBSA
- 6. What can one anticipate immediately after a major burn?
 - a. Airway compromise
 - b. Increased vascular permeability
 - c. Decreased peripheral vascular resistance
 - d. Decreased blood viscosity

- 7. Initial treatment for frostbite includes all of the following EXCEPT:
 - a. Remove wet clothing
 - b. Briskly rub to restore circulation
 - c. Prevent pressure on affected parts
 - d. Immerse in warm water from 98.6 to 102.6 F
- 8. Cleansing of the burn wound should entail use of:
 - a. Saline or soap and water
 - b. Betadine scrubs
 - c. An antibacterial agent
 - d. A topical antimicrobial
- 9. Children age < 2 years require more fluid resuscitation than adults.
 - a. True
 - b. False
- 10. What is the primary wound covering method for full thickness burns?
 - a. Biologic dressings

b. Autografts

- c. Enzymatic debridement creams
- d. Hydrocolloid dressings

References

Burn and Inhalation Injury

5th Edition

American Burn Association Burn Center Referral Criteria, https://ameriburn.org/public-resources/burn-center-referral-criteria/

American Burn Association Fact Sheet. https://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/

American Burn Association, National Burn Repository 2019 Update, Report of Data from 2009-2018.

Arifi, Hysni & Duci, Shkelzen & Zatriqi, Violeta & Ahmeti, Hasan & Haxhiu, Isa & Mekaj, Agon & Gashi, Musli & Buja, Zejne & Derguti, Shkelqim. (2014). A retrospective study of 572 patients with hand burns treated at the Department of Plastic Surgery Kosovo during the period 2000-2010. International journal of burns and trauma. 4. 7-13. https://www.researchgate.net/figure/Deep-dermal-hand-burn_fig1_260761712

Chemical Burns: Causes, Symptoms, Treatment, Prevention, Care. <u>https://www.webmd.com/first-aid/chemical-burns</u>

Fast, A. (2019). Pediatric Burn Care, presentation. http://www.michiganburn.org/pediatric_burn_care.html

Gauglitz, G., Williams, F., (2021). Overview of complications of severe burn injury. https://www.uptodate.com/contents/overview-of-complications-of-severe-burninjury?topicRef=16320&source=see_link

Gauglitz, G., Williams, F., (2021). Overview of the management of the severely burned patient. <u>https://www.uptodate.com/contents/overview-of-the-management-of-the-severely-burned-patient?topicRef=108999&source=see_link#H4071738715</u>

Greenhalgh, D.G. (2016). Burn care for general surgeons and general practitioners. Sacramento, California: Springer International Publishing.

Haberal, M., Sakallioglu Abali, A. E., & Karakayali, H. (2010). Fluid management in major burn injuries. *Indian journal of plastic surgery: official publication of the Association of Plastic Surgeons of India*, *43*(Suppl), S29–S36. <u>https://doi.org/10.4103/0970-0358.70715</u>

Harvey L, Mitchell R, Brodaty H, et al. Dementia: A risk factor for burns in the elderly. Burns 2016; 42:282. <u>https://pubmed.ncbi.nlm.nih.gov/26787126/</u>

Mayo Clinic, <u>https://www.mayoclinic.org/diseases-conditions/frostbite/symptoms-causes/syc-20372656</u>

Micak, R.P., Bulgar, E.M., Jeschke, M.G., Mandel, J., (2020). Inhalation injury from heat, smoke, or chemical irritants. <u>https://www.uptodate.com/contents/inhalation-injury-from-heat-smoke-or-chemical-irritants?topicRef=350&source=see_link#H954984461</u>

Rathjen NA, Shahbodaghi SD, Brown JA. Hypothermia and Cold Weather Injuries. Am Fam Physician. 2019 Dec 1;100(11):680-686. PMID: 31790182. https://pubmed.ncbi.nlm.nih.gov/31790182/

Sakamoto, Michiharu MD, PhD*; Morimoto, Naoki MD, PhD*†; Inoie, Masukazu MS‡; Takahagi, Miki‡; Ogino, Shuichi MD*; Jinno, Chizuru MD*; Suzuki, Shigehiko MD, PhD* Cultured Human Epidermis Combined With Meshed Skin Autografts Accelerates Epithelialization and Granulation Tissue Formation in a Rat Model, Annals of Plastic Surgery: June 2017 - Volume 78 -Issue 6 - p 651-658 doi: 10.1097/SAP.00000000001058. https://journals.lww.com/annalsplasticsurgery/toc/2017/06000

Satahoo, S.S., Palmieri, T.L. Fluid Resuscitation in Burns: 2 cc, 3 cc, or 4 cc?. *Curr Trauma Rep* 5, 99–105 (2019). <u>https://doi.org/10.1007/s40719-019-00166-6</u>

Shaikh et al. (2020). Management of Severely Burned Adult Patients: From Sedation to Organ Dysfunction, Frontiers in Medical Case Reports | July 2020 | Volume 01| Issue 04 | PAGE 1-15. https://www.jmedicalcasereports.org/uploads/178/7930_pdf.pdf

University of Michigan, State Burn Coordinating Center. *Emergency Burn Triage and Management*. <u>http://www.michiganburn.org/index.shtml</u>

Wang, Y., Beekman, J., Hew, J., Jackson, S., Issler-Fisher, A.C., Parungao, R., Lejevardi, S.S., Li, Z., Maitz, P.K.M.. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Advanced Drug Delivery Reviews 123 (2018) 3–17. https://pubmed.ncbi.nlm.nih.gov/28941987/

Wilkes, G., Hydrofluoric Acid Burns. (2021). <u>https://emedicine.medscape.com/article/773304-overview</u>